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SUMMARY

We model and analyse the single-phase �ow in a petroleum reservoir by taking into account a non-
standard energy equation. The numerical approximation is based on Raviart–Thomas mixed �nite
elements and a code is developed and validated. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Thanks to emerging technologies based on optical �bre, some petroleum wellbores are now
endowed with temperature sensors. In order to interpret the recorded temperature pro�les and
to predict �ow repartition among each producing layer of a reservoir or to estimate virgin
reservoir temperatures, one �rst needs to develop a forward model. This implies to couple a
reservoir and a wellbore model, respectively, describing the �ow of a compressible �uid (oil
or gas) from both a dynamic and a thermal point of view, in a porous and a �uid medium.
In this paper, we are interested in the modelling and the �nite element approximation of

a reservoir. The reservoir � is treated as a porous medium divided into several geological
layers (�i)16i6N which are characterized by their own dip and physical properties. The �uid
�ow is modelled by the Darcy–Forchheimer equation coupled with a non-standard energy
balance which takes into account, besides convection and di�usion, the compressibility e�ect
(Joule–Thomson e�ect) and the frictional heating that occurs in the formation.
The physical problem is �rst written in axisymmetric form and then time-discretized.

Thus, at each time step one gets a linear system which is shown to be well-posed.
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The numerical approximation is achieved by means of conservative Raviart–Thomas �nite
elements. The existence and uniqueness of the discrete solution is established thanks to a
variant of the Babuska–Brezzi theory for mixed variational formulations. Numerical tests are
presented, validating the model from both a numerical (convergence in time and space) and
a physical (comparison with analytical solutions for the pressure) point of view.

2. PHYSICAL MODELLING

Due to the geometry of the domain (a reservoir surrounding a cylindrical well), we write
our problem in 2D axisymmetric form, depending only on the cylindrical coordinates (r; z).
Following the ideas of Ewing et al. [1], the pressure and the temperature are taken independent
of � and our 2D domain consists merely of �= {(r; z) | rw6r6R; z ∈ [zmin; zmax]}. The (r; z)
formulation of the conservation laws describing our problem, after a change of variables is

r�
@�
@t
+ divG=0;

1
r�

(
�K−1 +

F
r

|G|I
)
G+∇p= − �g

r(�c)∗
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@t
+ �−1(�c)fG · ∇T − div q − r��T @p

@t
− �−1(�T − 1)G · ∇p=0

1
r�
q − ∇T =0 �=�(p; T )

(1)

One notes that (1) is a coupled nonlinear system composed of the mass conservation law,
the Darcy–Forchheimer equation, a non-standard energy equation and the cubic state equation
of Peng–Robinson. The unknowns are the speci�c �ux G= r�v=(Gr;Gz)t with v denoting
the Darcy’s velocity, the heat �ux q=(qr; qz)t , the pressure p, the temperature T and the
density �. The other coe�cients are thermal or physical ones which can be discontinuous
across the interfaces of the geological layers.
We add to (1) initial conditions for � and T and boundary conditions. For that, we take

@�=�G ∪�p=�q ∪�T and we impose a pressure p �, a temperature T�, a normal speci�c �ux
Q and �nally a normal heat �ux � on �p, �T , �G and �q, respectively.

3. TIME-DISCRETIZED PROBLEM

The time discretization is based on the Euler’s implicit scheme. At each time loop, the idea
is to determine the unknowns G, q, p and T and then to update � by verifying the Peng–
Robinson cubic equation. To do that, we replace the derivative of � thanks to its dependency
in both p and T , and we obtain the following linearized problem:

1
r
MG+∇p= − �n−1g; 1

r�
q − ∇T =0
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p− r b
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T + divG= r

a
	t
pn−1 − r b

	t
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d
	t
T + kGn−1 · ∇T − r f

	t
p+ lGn−1 · ∇p− div q= r d

	t
T n−1 − r f

	t
pn−1

(2)

where a; b; d; k; f; l and M refer to coe�cients computed at tn−1.
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In practice rw � 4 inch, so we are not concerned here with the case where r goes to 0, see
also Reference [1].
The present reservoir model is coupled in Reference [2] with a wellbore model, where now

r may vanish. This degeneracy is treated by developing a pseudo 1D approach, thanks to an
explicit dependence on r of the unknowns.
For the sake of simplicity, we denote by V=(G; q) the vector unknowns, respectively, by

s=(p; T ) the scalar ones and we introduce the spaces

L2(�)=L2(�)× L2(�); H(div;�)=H (div;�)×H (div;�)
H0(div;�)= {V′=(G′; q′)∈H(div;�);G′ · n=0 on �G; q′ · n=0 on �q}
H∗(div;�)= {V′=(G′; q′)∈H(div;�);G′ · n=Q on �G; q′ · n=� on �q}

We establish next the well-posedness of the time-discretized problem (2) at any tn, under
non-restrictive regularity assumptions on the data but for a su�ciently small 	t. In order to
do that, we neglect in a �rst time the convective terms and we write the problem under a
mixed variational form

Find V∈H∗(div;�); s∈ L2(�) such that
A(V;V′) + B(s;V′)=F1(V′) ∀V′ ∈H0(div;�)
−B(s′;V) + C(s; s′)=F2(s′) ∀s′ ∈ L2(�)

(3)

where the bilinear forms are de�ned by

A(V;V′)=
∫
�

1
r
MG·G′ dx+

∫
�

1
r�
q·q′ dxB(s;V′)=−

∫
�
p divG′ dx+

∫
�
T div q′ dx

C(s; s′)=
∫
�
r
a
	t
pp′ dx −

∫
�
r
b
	t
Tp′ dx +

∫
�
r
d
	t
TT ′ dx −

∫
�
r
f
	t
pT ′ dx

Then one can establish:

Theorem 3.1
Assume that all the thermodynamic coe�cients are bounded and that a, d, 1=� are strictly
positive and M is uniformly positive de�nite. Suppose moreover that

∃c∈R∗
+ such that 4ad− (b+ f)2¿c a:e: in � (4)

Then the mixed problem (3) has a unique solution.

Proof
We apply a variant of the Babuska–Brezzi theory. One easily checks the coercivity of A(·; ·)
on Ker B and the inf–sup condition for B(·; ·). Moreover, A(·; ·) is obviously symmetric and
positive on H(div;�). Hence, it is su�cient (cf. Reference [3]) to prove the positivity of
C(·; ·), which in our case is ensured by the condition (4). For more details, one may see
Reference [4]. Note that (4) is justi�ed in practice by all the available experimental data.

One can also show that for su�ciently smooth boundary conditions and thermodynamic co-
e�cients (i.e. ∇�∈L∞(�i);M

−1 ∈C0;1(�i) Lipschitz function), the solution to (3) is smoother
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on each geological layer �i. More precisely, one gets that s∈Y=
∏N
i=1H1+�(�i) with 0¡�61.

The proof is based on the regularity of an elliptic problem with discontinuous coe�cients on
a polygon (cf. Reference [5], see also Reference [4]). An important point is that we conserve
the regularity of the solution from one time step to another. Therefore, the linear continuous
operator K : Y −→ L2(�); K(s)= kGn−1 · ∇T + lGn−1 · ∇p is compact thanks to the compact
embedding of H�(�i) into L2(�i).
Denoting by L the linear continuous operator which associates with any smooth data f the

unique solution �=(V; s)∈H(div;�)×Y to (3), our initial problem (2) can be put under the
following form:

�=L(f +K(�)) ⇐⇒ (I − LK)�=Lf (5)

where now LK is a compact operator from H(div;�)×Y to itself.

Theorem 3.2
For 	t su�ciently small, problem (5) has a unique solution.

Proof
Thanks to the Fredholm’s alternative, it is su�cient to prove that Ker(I−LK)= {0} in order
to obtain the well-posedness of (5). The solution of the equation (I − LK)�=0 satis�es
the following relation:

A(V;V) + C(s; s) +
∫
�
K(s)T dx=0

By replacing ∇T =(1=r�)q and ∇p=−(1=r)MG, it �nally comes that �=0 for 	t¡c′ [4ad−
(b+ f)2] where c′ is a constant depending on M and Gn−1. A more detailed proof can be
found in Reference [4].

As a conclusion, we have proved that at any time step tn the linearized problem (2) has a
unique solution. The well-posedness of the non-linear time continuous problem (1) is to be
studied in perspective.

4. FINITE ELEMENT APPROXIMATION

Let (Th)h be a regular family of triangulations of � consisting of triangles matching at the
interfaces between the layers �i. We consider the following conforming �nite element spaces:

Lh= {p′ ∈L2(�); p′
|K ∈P0; ∀K ∈Th}; Vh= {G′ ∈H (div;�); G′

|K ∈RT0; ∀K ∈Th}

where P0 is the space of constant functions and RT0 is the lowest-order Raviart–Thomas space
(see Reference [3]). We put

Lh=Lh × Lh; V0h=(Vh × Vh) ∩H0(div;�)
V∗
h = {(G′; q′)∈Vh × Vh |G′ · n=Ih(Q) on �G; q′ · n=Ih(�) on �q}
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where Ih(Q), Ih(�) are piecewise constant approximations of Q on �G, respectively, of �
on �q. We employ an upwind scheme in order to treat the convective terms. Thus, we take

∫
K
kGn−1h · ∇T dx� ∑

e∈@K−
k
(∫

e
Gn−1h · n d�

)
(T ∗ − T|K); ∀T ∈Lh (6)

where @K−= {e∈ @K |Gn−1h ·n¡0} is the set of incoming edges. We take T ∗=T|K∗ , where the
triangle K∗ is such that {e}= @K ∩ @K∗, T ∗=T� if e∈�T , respectively, T ∗=0 if e∈ @�\�T .
A similar formula is used for the pressure term.
We are now able to write the discrete problem

Find Vh ∈V∗
h ; sh ∈ Lh such that

A(Vh;V′) + B(sh;V′) = F1h(V′) ∀V′ ∈V0h

B(s′;Vh)− (C +Dh)(sh; s′)=F2h(s′) + F3h(s′) ∀s′ ∈ Lh

(7)

where F1h(·) and F2h(·) are obtained from F1(·) and F2(·) by numerical integration on �n−1,
pn−1, Tn−1. Dh(·; ·) comes from the upwinding scheme and F3h(·) too, this last linear form is
due to the non-homogeneous boundary conditions.
Concerning the well-posedness of the discrete problem (7), we apply an extension of the

Babuska–Brezzi theory which can be found in Reference [3].
Since Kerh B⊂Ker B, it is obvious that A(·; ·) is uniformly H(div;�)-elliptic. The discrete

inf–sup condition on B(·; ·) is also satis�ed, uniformly with respect to the discretization
parameter. The proof is classical and makes use of Fortin’s trick and the Raviart–Thomas
interpolation operator. Next we state

Lemma 4.1
For 	t6	h2=‖Gn−1h ‖0;� and with h6chK for all K ∈Th, one has (C +Dh)(s; s)¿0; ∀s∈ Lh.
Proof
One uses that C(s; s)¿(c=	t)‖s‖20;� and the continuity of Dh(·; ·) on Lh × Lh

|Dh(s; s′)|6 ch

( ∑
e∈Eh

he‖Gn−1h · n‖20; e
)1=2( ∑

e∈Eh

h−1
e ‖[s]‖20; e

)1=2
‖s′‖0;�

6
c1
h2

‖Gn−1h ‖0;� ‖s‖0;� ‖s′‖0;�

This last statement holds thanks to the Cauchy–Schwarz inequality and to the equivalence
of norms in �nite dimensional spaces (see Reference [3]). So the conclusion holds with
	=2c=c1.
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5. NUMERICAL SIMULATIONS

In order to validate the considered model, we �rst study the behaviour of the solution with
respect to the mesh re�nement. We consider a reservoir divided into two geological ho-
mogeneous layers where only the lower one communicates with the wellbore. We simulate
the production of an oil by imposing a di�erence of pressure between the perforation and
the external boundary of the reservoir. The solutions are computed on congruent meshes
and we evaluate the error between the solution calculated on the �nest mesh (cf. Figure 1)
and the ones obtained for the intermediate meshes. We numerically obtain ‖p−ph‖0;�6C|h|	
as error bound for the pressure with 	 � 1:46.
We also compare the computed pressure with analytical pressure solutions given by well-

test software such as PIE for two common situations: the evolution of the pressure near the
well for a reservoir with a constant pressure boundary and for a closed reservoir. As shown in
Figure 2, both methods lead to very similar results. Finally, we consider an existing reservoir
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Figure 1. Pressure, temperature and convergence error.
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Figure 2. Comparison with analytical pressure solutions for a closed reservoir and a reservoir
with a constant pressure boundary.
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Figure 3. Pressure and temperature maps for a seven-layer realistic reservoir
after a one-month production.

divided into seven geological layers characterized by high heterogeneities and where only the
even numbered ones communicate with the well. In Figure 3, one may see that the computed
pressure and temperature are physically acceptable.
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